

TYPE TEST CERTIFICATE OF COMPLETE TYPE TESTS

OBJECT

A three-core heat-shrinkable straight-through joint

TYPE

GSJ/ XAS/1233 A

Rated voltage, U₀/U (U_m)

6,35/11 (12) kV

Conductor material

AL

Conductor cross-section

3 x 185 mm²

Insulation material

XLPE

MANUFACTURER

Gala Shrink Fit,

Mumbai, India

CLIENT

Gala Shrink Fit,

Mumbai, India

TESTED BY

KEMA Nederland B.V.,

Arnhem, The Netherlands

DATE OF TESTS

12 August 2014 to 5 February 2015

The object, constructed in accordance with the description, drawings and photographs incorporated in this Certificate, has been subjected to the series of proving tests in accordance with

IEC 60502-4 (2010)

This Type Test Certificate has been issued by KEMA following exclusively the STL Guides.

The results are shown in this document. The values obtained and the general performance are considered to comply with the above Standard and to justify the ratings assigned by the manufacturer as listed on page 4.

This Certificate applies only to the object tested. The responsibility for conformity of any object having the same type references as that tested rests with the manufacturer.

This Certificate consists of 65 pages in total.

Copyright: Only integral reproduction of this Certificate is permitted without written permission from KEMA. Electronic copies in e.g. PDF-format or scanned version of this Certificate may be available and have the status "for information only". The sealed and bound version of the Certificate is the only valid version.

KEMA Nederland BX

S.A.M. Verhoeven

Director Testing, Inspections & Certification The Netherlands

Arnhem, 30 April 2015

CONTE	ENTS	page
1	Identification of the object tested	
1.1	Ratings/characteristics of the object tested and proved by tests	4
1.2	Characteristics of the joint for cables with extruded insulation	4
1.3	Characteristics of the test cable	4
1.4	List of drawings	7
2 .	General information	
2.1	The tests were witnessed by	
2.2	The tests were carried out by	
2.3	Measurement uncertainty	8
3	Test sequence 2.1 for joint (two joints)	
3.1	Test arrangement	
3.1.1	Determination of the cable conductor temperature	
3.2	Photograph of test set-up	10
4	Test sequence 2.1	11
4.1	DC voltage dry	
4.2	AC voltage dry	12
4.3	Partial discharge at ambient temperature	
4.4	Impulse voltage at elevated temperature	
4.5	Heating cycle voltage in air	22
4.6	Heating cycle voltage under water	
4.7	Partial discharge at elevated and ambient temperature	
4.7.1	Partial discharge at elevated temperature	
4.7.2	Partial discharge at ambient temperature	
4.8	Impulse voltage at ambient temperature	
4.9	AC voltage dry	34
4.10	Examination	35
4.10.1	Photographs	36
5	Test sequence 2.2 for joint (one joint)	38
5.1	Test arrangement	
5.1.1	Determination of the cable conductor temperature	
5.2	DC voltage dry	
5.3	AC voltage dry	
5.4	Thermal short circuit (screen)	
5.5	Thermal short circuit test	
5.6	Test results and oscillograms	
5.7	Condition / inspection after test	
5.8	Impulse voltage at ambient temperature	
5.9	AC voltage dry	59
5.10	Examination	60
E 10 1	Photographs	61

7	3-	1038-15
ú) -	1030-1

6	Drawing	64
7	Measurement uncertainty	65

1 IDENTIFICATION OF THE OBJECT TESTED

1.1 Ratings/characteristics of the object tested and proved by tests

Rated voltage, U_0/U (U_m) 6,35/11 (12) kV Rated maximum conductor temperature in normal operation 90 °C Rated conductor cross-section 3 x 185 mm²

Thermal short-circuit current 22,5 kA

1.2 Characteristics of the joint for cables with extruded insulation

Manufacturer Gala Shrink Fit, Mumbai, India

Type heat-shrinkable straight-through joint

Year of manufacture 2014

Rated voltage, U₀/U (U_m) 6,35/11 (12) kV

No. of cores

Dynamic short-circuit current
Type connector

not applicable
inline connector

Length connector 100 mm
Internal diameter connector 16 mm
External diameter connector 27 mm

Type of stress control stress grading mastic

1.3 Characteristics of the test cable

Note: the cable is not part of the type test.

Manufacturer (as stated by the client)

Apar Industries Limited,

Indi

Type $U_0 = 6 \text{ kV } 3x185 \text{ mm}^2 \text{ Al/XLPE/CTS/PVC/SWA/PVC}$

(A2XCEWY) CABLE

Manufacturing year 2014

Rated voltage, U₀/U (U_m) 6/10 (12) kV

No. of cores

Marking on the oversheath

Core identification core 1 = red

core 2 = yellow

core 3 = blue

AIL/UNIT: UNIFLEX CABLES- INDIA 'UNICAB' 6/10 (12) KV XLPE CABLE '3X185 Sq.mm 2014

Construction see List of drawings

Conductor

- material aluminium - cross-section 185 mm²

nominal diameter 16,2 mm

type stranded circular compacted
 maximum conductor temperature in 90 °C

normal operation

- presence and nature of measures to

achieve longitudinal watertightness

no

.

.Conductor screen

- material extruded semi-conducting compound

nominal thickness 0,6 mm

material designation
 extruded semi-conducting compound

manufacturer of the material
 Hanwha and Sakun Polymer

Insulation

materialnominal thickness3,4 mm

Insulation (core) screen

material extruded semi-conducting compound

strippablenominal thickness0,5 mm

Metal screen

material two annealed plain copper tape

type helical

nominal thickness and width of tape
 nominal thickness and width of tape
 cross-sectional area
 0,03 x 40 mm (overlap 10%)
 2 x 40 mm (overlap 10%)
 27,6 mm² three cores together

Inner coverings and fillers

material yes

Separation sheath

materialnominal thicknessPVC, type ST₂1,6 mm

manufacturer of the material
 Gala Shrink Fit, Mumbai, India

Metal armour

material galvanised steel round wires

- number of wires 68

nominal diameter of wires 2,5 mm

cross-sectional area 333,8 mm²

Metal foil or tape, longitudinally applied, no bonded to the oversheath

.Oversheath

material
 nominal thickness
 nominal overall diameter of the cable

PVC, type ST₂
3,3 mm
72,0 mm

(D)

material designation
 PVC, type ST2

manufacturer of the material
 Gala Shrink Fit, Mumbai, India

colour black

Manufacturing details insulation system

location of manufacturing
 type of extrusion line
 Umbergaon, India
 CCV

type of extrusion
 triple common extrusion

- curing means dry
- cooling means dry
- manufacturing length (where cable 100 m

sample for testing has been taken from)

1.4 List of drawings

The manufacturer has guaranteed that the object submitted for tests has been manufactured in accordance with the following drawing and documents. KEMA has verified that this drawing and documents adequately represent the object tested. The manufacturer is responsible for the correctness of this drawing and documents and the technical data presented.

The following drawing and documents have been included in this Certificate:

Drawing No./document No.

Revision

GTSPL/K3/06/14

00

The following document is only listed for reference and is kept in KEMA's files:

Document no. Revision/date

Components list GSJ/XAS/1233A
Jointing instruction GSJ/XAS/1233A -

2 GENERAL INFORMATION

2.1 The tests were witnessed by

Name

Mr Gurubax Singh

12 August to 15 August 2014

Company

Gala Shrink Fit,

Mumbai, India

2.2 The tests were carried out by

Name

Mr A. Sengers

Ms H. He

Mr T. Ariaans

Mr E. Pultrum

Mr D. Bouchier

Mr N. Dobbe

Mr K. van der Linden

Company

KEMA Nederland B.V., Arnhem, The Netherlands

2.3 Measurement uncertainty

A table with measurement uncertainties is enclosed in this Certificate. Unless otherwise stated, the measurement uncertainties of the results presented in this Certificate are as indicated in that table.

3 TEST SEQUENCE 2.1 FOR JOINT (TWO JOINTS)

3.1 Test arrangement

3.1.1 Determination of the cable conductor temperature

Standard

Standard

IEC 60840, Annex A, Subclause A.3.1 was used as a guide

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the main loop in order to create the same environmental conditions as for the test loop.

The heating currents in both the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. IEC 60840, Annex A was used as a guide and IEC 60840, Subclause A.3.1, method 1 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated temperature limits for at least 2 hours. The test set-up was consisting of a joint as part of a cable system, also incorporating two outdoor terminations which are not part of the type test objects. The test set-up of two separate main test loops connected in series.

Sample 1 and 2 for test sequence 2.1

4 TEST SEQUENCE 2.1

4.1 DC voltage dry

Standard and date

Standard

IEC 60502-4, Table 6, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

21 °C

Testing arrangement		Voltage applied, DC		Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	6	38	15
Conductor 1, 2 and 3 of test loop 2	Metal screens	6	38	15

Note

On request of the client the test has been performed more severely at $6 \times U_0$ instead of $4 \times U_0$.

Requirement

No breakdown or flashover shall occur.

Result

4.2 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 6, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

22 °C

Testing arrangement Voltage applied to Earth connected to		Voltage ap	Voltage applied, 50 Hz	
	Earth connected to	x U ₀	(kV)	Duration (min)
Conductor 1, 2 and 3 of test loop 1	Metal screens	4,5	28,5	5
Conductor 1, 2 and 3 of test loop 2	Metal screens	4,5	28,5	5

Requirement

No breakdown or flashover shall occur.

Result

4.3 Partial discharge at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 6, test number 2

Test date

13 August 2014

Environmental conditions

Ambient temperature

22 °C

.Characteristic test data

Temperature of test object	22 °C
Circuit	direct
Calibration	5 pC
Noise level at 1,73 U ₀	2,5 pC
Declared sensitivity	5 pC
Required sensitivity	≤ 5 pC
Centre frequency	117,5 kHz
Bandwidth (△f)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Core	Voltage ap	olied, 50 Hz	Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
1 of test loop 1	2	12,5	10	-
	1,73	11	-	Not detectable
2 of test loop 1	2	12,5	10	-
g in	1,73	11		Not detectable
3 of test loop 1	2	12,5	10	
	1,73	11	-	Not detectable
1 of test loop 2	2	12,5	10	
Lucy Control	1,73	11	-	Not detectable
2 of test loop 2	2	12,5	10	-
S ladving to	1,73	11	-	Not detectable
3 of test loop 2	2	12,5	10	
	1,73	11	-	Not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U₀ shall not exceed 10 pC.

Result

4.4 Impulse voltage at elevated temperature

Standard and date

Standard

IEC 60502-4, Table 6, test number 3

Test date

26 August 2015

Environmental conditions

Ambient temperature

21 °C

.Characteristic test data

Temperature of test object

97 °C

Specified test voltage

95 kV

Testing arrangement	nt	Polarity	Voltage applied	No. of impulses	See figure on next pages
Voltage applied to	Earthed		(% of test voltage)		
Conductor 1	Metal screens	Positive	50	1	1 (waveshape)
test loop 1 and 2	and conductor		65	1	2
	2 and 3		80	1	2
	unatau.		100	10	3 and 4
Conductor 1	Metal screens	Negative	50	1	5 (waveshape)
test loop 1 and 2	and conductor 2 and 3		65	1	6
			80	1	6
			100	10	7 and 8
Conductor 2	Metal screens	Positive	50	1	9 (waveshape)
test loop 1 and 2	and conductor 1 and 3		65	1	10
			80	1	10
			100	10	11 and 12
Conductor 2	Metal screens	Negative	50	1	13(waveshape)
test loop 1 and 2	and conductor 1 and 3		65	1	14
			80	1	14
			100	10	15 and 16
Conductor 3	Metal screens	Positive	50	1	17 (waveshape)
test loop 1 and 2	and conductor		65	1	18
	1 and 2		80	1	18
			100	10	19 and 20
Conductor 3 I	Metal screens	Negative	50	1	21 (waveshape)
test loop 1 and 2	and conductor		65	1	22
	1 and 2	103 -	80	1	22
			100	10	23 and 24

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV.

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

4.5 Heating cycle voltage in air

Standard and date

Standard

IEC 60502-4, Table 6, test number 4

Test dates

28 August to 9 October 2014

Environmental conditions

Ambient temperature

20-22 °C

.Characteristic test data

Heating method

conductor current

Stabilized temperature

97 °C

No. of	Required Heating Heating cycle		cycle		Voltage		
heating	steady	current during	Heating		Cooling		
cycles	conductor temperature	steady condition	Total Duration of duration conductor at steady temperature		Total duration (h)	Total duration (h)	Voltage applied 2,5 U ₀ (kV)
63	95-100	approx. 409	5	2	4	9	16

Note

On request of the client the applied number of heating cycles was 63 instead of 30.

Requirement

No breakdown shall occur.

Result

1038-15

4.6 Heating cycle voltage under water

Standard and date

Standard

IEC 60502-4, Table 6, test number 5

Test dates

10 October to 3 November 2014

Environmental conditions

Ambient temperature

20-22 °C

.Characteristic test data

Heating method

conductor current

Stabilized temperature

97 °C

Height above water

1 m

No. of	Required	Heating	Heating	cycle		Voltage	
heating	steady	current during	Heating		Cooling		
cycles	conductor temperature (°C)	steady condition (A)	Total duration (h)	Duration of conductor at steady temperature (h)	Total duration (h)	Total duration	Voltage applied 2,5 U ₀ (kV)
63	95-100	approx. 416	5	2	4	9	16

Note 1

For accessories used with non-longitudinal water blocked cable designs, the heating cycles voltage test under water shall be performed with oversheath damage. The oversheath of the cable is opened up to the core.

The joints were placed inside vessels, filled with water with a height of 1 meter above the top surface of the accessory.

On request of the client the applied number of heating cycles was 63 instead of 30.

Requirement

No breakdown shall occur.

Result

4.7 Partial discharge at elevated and ambient temperature

4.7.1 Partial discharge at elevated temperature

Standard and date

Standard

IEC 60502-4, Table 6, test number 6

Test date

11 November 2014

.Environmental conditions

Ambient temperature

20 °C

Characteristic test data

Temperature of test object	97 °C
Circuit	direct
Calibration	5 pC
Noise level at 1,73 U _o	2 pC
Declared sensitivity	4 pC
Required sensitivity	≤ 5 pC
Centre frequency	98 kHz
Bandwidth (Δf)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Core	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
1 of test loop 1 and 2	2	12,5	10	
	1,73	11	-	Not detectable
2 of test loop 1 and 2	2	12,5	10	
	1,73	11	-	Not detectable
3 of test loop 1 and 2	2	12,5	10	
The state of the s	1,73	11		Not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U₀ shall not exceed 10 pC.

Result

4.7.2 Partial discharge at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 6, test number 6

Test date

13 November 2014

Environmental conditions

Ambient temperature

20 °C

.Characteristic test data

Temperature of test object	20 °C
Circuit	direct
Calibration	5 pC
Noise level at 1,73 U ₀	2,5 pC
Declared sensitivity	5 pC
Required sensitivity	≤ 5 pC
Centre frequency	124,5 kHz
Bandwidth (Δf)	100 kHz
Test frequency	50 Hz
Coupling capacitor	2600 pF

Core	Voltage applied, 50 Hz		Duration	Partial discharge level
	x U ₀	(kV)	(s)	(pC)
1 of test loop 1 and 2	2	12,5	10	
	1,73	11		Not detectable
2 of test loop 1 and 2	2	12,5	10	-
	1,73	11	-	Not detectable
3 of test loop 1 and 2	2	12,5	10	-
	1,73	11		Not detectable

Requirement

The maximum partial discharge level from the test object at 1,73 U₀ shall not exceed 10 pC.

Result

4.8 Impulse voltage at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 6, test number 10

Test date

14 November 2014

Environmental conditions

Ambient temperature

20 °C

.Characteristic test data

Temperature of test object

20 °C

Specified test voltage

95 kV

Testing arrangement		Polarity Voltage applied	Voltage applied	No. of impulses	See figure on next pages	
Voltage applied to	Earthed	(% of test voltage)				
Conductor 1 of	Metal screens	Positive	50	1	1 (waveshape)	
test loop 1 and 2	and conductor		65	1	2	
	2 and 3		80	1	2	
	No ambor 20		100	10	3 and 4	
Conductor 1 of	Metal screens	Negative	50	1	5 (waveshape)	
test loop 1 and 2	and conductor		65	1	6	
	2 and 3		80	1	6	
			100	10	7 and 8	
Conductor 2 of test loop 1 and 2 and conductor 1 and 3	Positive	50	1	9 (waveshape)		
	and conductor	65 80 100	65	1	10	
	1 and 3		80	1	10	
			100	10	11 and 12	
Conductor 2 of	Metal screens	Negative	50	1	13 (waveshape)	
test loop 1 and 2	and conductor		65	1	14	
	1 and 3		80	1	14	
	The second second	and the same	100	10	15 and 16	
Conductor 3 of	Metal screens	Positive	50	1	17(waveshape)	
test loop 1 and 2	and conductor		65	1	18	
	1 and 2		80	1	18	
			100	10	19 and 20	
Conductor 3 of	Metal screens	Negative	50	1	21 (waveshape)	
test loop 1 and 2	and conductor		65	1	22	
	1 and 2		80	1	22	
Litization			100	10	23 and 24	

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

KEMA≼

4.9 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 6, test number 11

Test date

17 November 2014

Environmental conditions

Ambient temperature

20 °C

Temperature of test object

20 °C

Testing arrangement		Voltage ap	plied, 50 Hz	Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 1 and 2	Metal screens	2,5	16	15

Requirement

No breakdown or flashover shall occur.

Result

4.10 Examination

Standard and date

Standard

IEC 60502-4, Table 6, test number 12

Test date 1 December 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

21 °C

Test loop	Observations ¹⁾
1 and 2	None of the following has been detected: - cracking in the filling material and/or tape or tubing components - a moisture path bridging a primary seal - corrosion and/or tracking and/or erosion which would, in time, lead to a failure of the accessory - leakage of any insulating material

The results are for information only.

5 TEST SEQUENCE 2.2 FOR JOINT (ONE JOINT)

5.1 Test arrangement

5.1.1 Determination of the cable conductor temperature

Standard

Standard

IEC 60840, Annex A, Subclause A.3.1 was used as a guide

For the tests at elevated temperature, a reference loop for temperature control of the conductor was installed and conductor current was used for heating. The reference cable was cut from the total cable length intended for the type test. This reference loop was installed close to the main loop in order to create the same environmental conditions as for the test loop.

The heating currents in both the reference loop and the test loop were kept equal at all times, thus the conductor temperature of the reference loop is representative for the conductor temperature of the test loop. IEC 60840, Annex A was used as a guide and IEC 60840, Subclause A.3.1, method 1 was applied.

The tests at elevated temperature are carried out after the conductor temperature has been within the stated temperature limits for at least 2 hours. The test set-up was consisting of a joint as part of a cable system, also incorporating a heat-shrinkable outdoor termination and a heat-shrinkable indoor termination.

Sample 3 for test sequence 2.2

1038-15

5.2

DC voltage dry

Standard and date

Standard

IEC 60502-4, Table 6, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

22 °C

Testing arrangement		Voltage ap	plied, DC	Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 3	Metal screens	6	38	15

Note

On request of the client the test has been performed more severely at 6 x U_0 instead of 4 x U_0 .

Requirement

No breakdown or flashover shall occur.

Result

5.3 AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 6, test number 1

Test date

12 August 2014

Environmental conditions

Ambient temperature

21 °C

Temperature of test object

22 °C

Testing arrangement		Voltage ap	pplied, 50 Hz	Duration
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 3	Metal screens and conductor 2 and 3	4,5	28,5	5

Requirement

No breakdown or flashover shall occur.

Result

5.4 Thermal short circuit (screen)

Standard and date

Standard

IEC 60502-4, Table 6, test number 7

Test date

9 January 2015

Environmental conditions

Ambient temperature

22 °C

Characteristic test data

Stabilized conductor temperature

97 °C

Conductor heating	ALTO DESIGNATION	
Required conductor temperature θ (°C)	Applied 3-phase heating current (A)	Conductor stable at 97 °C before short-circuit application (h)
95 ≤ θ ≤ 100	530	2

Short-circuit application	on on screen (see	figures on the next pa	ages)
Specified short-circuit current	Frequency	Duration	Number of short- circuit applications
(kA)	(Hz)	(s)	
2,5	50	1	2

Procedure

The conductor temperature shall be maintained within the stated temperature limits for at least 2 h before carrying out the short-circuit test. Between the two short-circuit applications, the cable screen shall be allowed to cool down to a temperature less than 10 K above its temperature prior to the first short-circuit application.

Requirement

No visible deterioration may occur.

Result

5.5 Thermal short circuit test

Standard and date

Standard

IEC 60502-4, Table 6, test number 8

Test date

28 January 2015

Environmental conditions

Ambient temperature

11 °C

Characteristic test data

Conductor material		Aluminun
Cross section conductor	185	mm ²
Maximum short circuit conductor	250	°C
temperature		
First short circuit application		
Start temperature of test object	13,5	°C
(measured value)		
Selected duration of short circuit	1	S
current		
Calculated short circuit current	22,5	kA
Thermal current, three phase	22,7	kA
Duration	1,06	S
Second short circuit applicatio	n	
Start temperature of test object	13,5	°C
(measured value)		
Selected duration of short circuit	1	S
current		

Procedure

Duration

Calculated short circuit current

Thermal current, three phase

Two short-circuits shall be applied to raise the conductor temperature to the maximum permissible short-circuit temperature of the cable within 5 s. Between the two short-circuits, the test loop shall be allowed to cool to a temperature less than 10 K above its temperature prior to the first short-circuit.

kA

kA

S

22,5

22,7

1,05

Test circuit S01

G = Generator

TO = Test Object

U = Voltage Measurement to earth

MB = Master Breaker
MS = Make Switch

L = Reactor

= Current Measurement

PT = Power Transformer

Supply		
Power	MVA	47,2
Frequency	Hz	50
Phase(s)		3
Voltage	kV	2,2
Current	kA	22
Impedance	Ω	0,033
Power factor		< 0,1
Neutral		Not earthed

Load	
Short-circuit point	earthed

5.6 Test results and oscillograms

1 2TO 66. 7kA pu

60 ms

Test number:	150128-6005

Phase				
Peak value of current	kA	-42,6	38,7	38,1
Symmetrical current, beginning	kA	23,0	23,5	23,3
Symmetrical current, middle	kA	22,7	23,1	22,8
Symmetrical current, end	kA	22,5	22,9	22,7
Symmetrical current, average	kA	22,8	23,3	22,1
Average current, three phase kA			22,7	
Current duration	s	1,05	1,05	1,05
Thermal equivalent		22,5 k	A during	1,06 s

Remarks:					
Nomano.	-				

Thermal short-circuit test

UZTO 1. 25kV pu-

U1TO 1. 25kV pu-

Test number: 150128-6006

Phase				
Peak value of current	ķA	-42,3	38,6	37,9
Symmetrical current, beginning	kA	23,0	23,4	23,2
Symmetrical current, middle	kA	22,6	23,0	22,7
Symmetrical current, end	kA	22,5	22,9	22,6
Symmetrical current, average	kA	22,8	23,2	22,0
Average current, three phase	KA 22,7			
Current duration	S	1,05	1,05	1,05
Thermal equivalent		22,5 kA during 1,10		1,10 s

uni t 60 m

Ambient temperature	13,5 °C

USTO 1. 25kV pu-13TO 66. 7kA pu-

Remarks:

5.7 Condition / inspection after test

Requirement

No visible deterioration may occur.

Result

No visible change. No visible damage. The object passed the test.

5.8 Impulse voltage at ambient temperature

Standard and date

Standard

IEC 60502-4, Table 6, test number 10

Test date

29 January 2015

Environmental conditions

Ambient temperature

20 °C

Characteristic test data

Temperature of test object

20 °C

Specified test voltage

95 kV

Testing arrangement		Polarity	Voltage applied	No. of impulses	See figure on next pages	
Voltage applied to	Earthed		(% of test voltage)			
Conductor 1	Metal screens	Positive	50	1	1 (waveshape)	
test loop 3	and conductor		65	1	2	
	2 and 3		80	1	2	
			100	10	3 and 4	
Conductor 1	Metal screens	Negative	50	1	5 (waveshape)	
test loop 3	and conductor		65	1	6	
	2 and 3		80	1	6	
			100	10	7 and 8	
Conductor 2 test loop 3	Metal screens and conductor 1 and 3	Positive	50	1	9 (waveshape)	
			65	1	10	
			80	1	10	
			100	10	11 and 12	
Conductor 2	Metal screens	Negative	50	1	13(waveshape)	
test loop 3	and conductor 1 and 3		65	1	14	
			80	1	14	
			100	10	15 and 16	
Conductor 3	Metal screens	Positive	50	1	17 (waveshape)	
test loop 3	and conductor 1 and 2		65	1	18	
			80	1	18	
			100	10	19 and 20	
Conductor 3	Metal screens	Negative	50	1	21 (waveshape)	
test loop 3	and conductor		65	1	22	
	1 and 2		80	1	22	
		1000	100	10	23 and 24	

Note

On request of the client the applied LI voltage was 95 kV instead of 75 kV

Requirement

Each core of the cable and accessory shall withstand without failure 10 positive and 10 negative voltage impulses.

Result

1038-15

5.9

AC voltage dry

Standard and date

Standard

IEC 60502-4, Table 6, test number 11

Test date

29 January 2015

Environmental conditions

Ambient temperature 20 °C Temperature of test object 20 °C

Testing arrangement Voltage app		plied, 50 Hz	Duration	
Voltage applied to	Earth connected to	x U ₀	(kV)	(min)
Conductor 1,2 and 3 of test loop 3	Metal screens	2,5	16	15

Requirement

No breakdown or flashover shall occur.

Result

5.10 Examination

Standard and date

Standard

IEC 60502-4, Table 6, test number 12

Test date

5 February 2015

Environmental conditions

Ambient temperature

20 °C

Temperature of test object

20 °C

Test loop	Observations ¹⁾
3	None of the following has been detected: - cracking in the filling material and/or tape or tubing components - a moisture path bridging a primary seal - corrosion and/or tracking and/or erosion which would, in time, lead to a failure of the accessory - leakage of any insulating material

Result

The results are for information only.

6 DRAWING

7 MEASUREMENT UNCERTAINTY

The measurement uncertainties in the results presented are as specified below unless otherwise indicated.

Measurement	Measurement uncertainty		
Dielectric tests and impulse current tests:			
- peak value	≤ 3%		
- time parameters	≤ 10%		
Capacitance measurement	0,3%		
Tan δ measurement	± 0,5% ± 5 × 10 ⁻⁵		
Partial discharge measurement:			
- <10 pC	2 pC		
- 10 to 100 pC	5 pC		
- > 100 pC	20%		
Measurement of impedance AC-resistance measurement	≤ 1%		
Measurement of losses	≤ 1%		
Measurement of insulation resistance	≤ 10%		
Measurement of DC resistance:			
– 1 to 5 μΩ	1%		
– 5 to 10 μΩ	0,5%		
– 10 to 200 μΩ	0,2%		
Radio interference test	2 dB		
Calibration of current transformers	2,2 x 10 ⁻⁴ l/l _u and 290 µrad		
Calibration of voltage transformers	1,6 x 10 ⁻⁴ U _I /U _u and 510 µrad		
Measurement of conductivity	5%		
Measurement of temperature:			
50 to -40 °C	3 K		
40 to125 °C	2 K		
- 125 to 150 °C	3 K		
Tensile test	1%		
Sound level measurement	type 1 meter as per IEC 60651 and ANSI S1,4,1971		
Measurement of voltage ratio	0.1%		