Tyco Electronics Energy Division

PPR 694

Qualification of Inline Joint type EPKJ for Plastic Insulated Cables 4x150mm² 1 kV

Tested by: **EPM** -Test Institute Munich Date: 19th January 1984

Pages: 8 Appendix: --

 $\ensuremath{\mathbb{C}}$ Reports may only be used in their original form

Tyco Electronics Raychem GmbH Energy Division Haidgraben 6 D-85521 Ottobrunn Munich, Germany Tel. (089) 6089-0 Fax (089) 6096345

ELEKTRISCHES PRUEFAMT MUENCHEN DER STADTWERKE MUENCHEN – ELEKTRZITAETSWERKE

8 MUENCHEN, FRANZSTRASSE 9

(Translation from German to English by Tyco Electronics Raychem GmbH)

TEST REPORT	NO.4020	of 19 th January 1984
TEST OBJECT	Inline Joint type EPKJ for plastic insulated cables 4x150 mm2 1 kV	
MANUFACTURER	Raychem GmbH, Wernher-von-Braun-Strasse 11 D-8011 Putzbrunn near Munich	
REQUESTOR	The manufacturer	
TEST REQUIREMENTS	Test according to VDE 0278 part 1/6.80 VDE requirements "Power cable accessories with rated voltages U up to 30 kV, general" and part 3/6.8 VDE requirements "Power cable accessories with rated voltages U up to 30 kV, joints Uo/U = 0.6/1 k ³ Additional tests which were not required by VDE we carried out as specified by the requestor.	80 V'' vere

This report contains 8 pages

Test sample

Quantity:	5 test loops
Connectors:	Hexagonal crimp connectors
Cable:	NA2XY 4x150mm ² se 0.6/1 kV (4-core sector shaped solid aluminium conductor 150mm ² , XLPE insulated, PVC sheathed) Manufacturer Kabelmetal, 1981
Joint:	4 heat-shrinkable inner tubing WCSM 28/9-250/172 1 heat-shrinkable outer tubing WCSM 90/30-800/172

Preparation

5 test loops were installed in accordance with Raychem Installation Instruction EPP 0081 10/82 and in accordance with VDE 0278 by members of Raychem GmbH at the premises of Elektrisches Pruefamt Muenchen.

Test Sequence

No.	Type of Test	Page
1	Temperature Control inside the joint	5
2	Insulation Resistance in water	6
3	AC Voltage Withstand 4 kV 15 minutes in water	7
4	Impulse Voltage test 8 kV in air	7
5	Insulation Resistance in water	7
6	Load Cycling test, 63 cycles/336 A in air	7
7	Thermal Short Circuit test 17.4 kA 1s, 250°C	8
8	Load Cycling test, 63 cycles/336 A in water	8
9	Insulation Resistance in water	8
10	AC Voltage Withstand 4 kV 15 minutes in water	8
11	Impulse Voltage test 8 kV in water	8
12	DC Voltage test 15 kV in water	8

Tests

1. Temperature Control inside the joint

In accordance with part 1 section 5.12 Of VDE 0278, a thermocouple was installed on the conductor 10mm next to the connector on one of the test loops before shrinking the tubing (see fig. 2 of original report).

Following the complete installation of the test loop a current in accordance with VDE 0298 part 2 table 5 was applied.

The current was calculated to an ambient temperature of 20°C, at 333A. After 15 hours, the temperature inside the joint was measured at 84°C.

In accordance wit VDE 0278 90° C + 5K are sufficient.

Fig. 2 of original report

Test sample with partially pushed on heat-shrinkable tubing, upper left is the thermocouple to measure the temperature

2. Insulation Resistance in water

On 4 test loops, 50 mm away from the end of the joint the oversheath was removed for a distance of 50mm. The joints were then arranged in a water bath in such a way that there was a distance of at least 1000 mm between the top of the cable and the water level, whereby the cores were at least 100 mm above the water level (see fig.3 of original report).

In this configuration, the insulation resistance was measured with a test voltage of 5000 V. Each conductor was tested to all other cores in turn and afterwards all cores together to the water bath (**not necessary** in accordance with VDE).

Results, see page 9.

3. AC Voltage Withstand 4 kV 15 minutes in water

The test was performed in accordance with VDE 0472 §508 2.1 A sinusodial voltage of 4 kV eff. 50Hz was applied in turns between every single conductor and all other cores grounded for a period of 15 minutes (requirement according to VDE 0278 1 minute in air).

Result: No breakdown or flashover.

4. Impulse Voltage test 8 kV in air

The test was performed with an impulse voltage which had a rise time of 1.2μ s and a decay of about 50 μ s. The test loops were subjected to 10 impulses of 8 kV positive and 10 impulses of 8 kV negative polarity in turn between one conductor and the grounded other conductors (**not required** by VDE 0278).

Result: No breakdown or flashover

5. Insulation Resistance in water

Repeat of test 2., (not required by VDE 0278).

Result: See page 9

6. Load Cycling test

In accordance with part 1 §4.4 the conductors of the test loops were connected in series and subjected to 63 cycles free in air. Each load cycle consisted of a 5 hour heating period and a 3 hour cooling period. The current was calculated with a factor of 1.09 (in accordance with VDE 0278 part 1 table 1) to be 336 A in accordance with VDE 0298, part 2 table 5. This current was controlled at the end of the first load cycle and not changed afterwards.

7. Thermal Short Circuit test

At 20°C room temperature, each core was exposed to 17.5 kA for 1s which increased the conductor temperature to approx. 250°C. Each core was exposed twice, before the second short circuit current the test loops were cooled down to room temperature (**not required** in accordance to VDE 0278).

8. Load Cycling test in water

Repeat of test 6. with an additional 63 cycles, but in water to test the sealing. The test set up was as described in test 2. The water temperature was during the whole test less than 40° C.

9. Insulation Resistance in water

Repeat of test 2.

Result: See page 9

10. AC Voltage Withstand 4 kV 15 minutes in water

Repeat of test 3. (in accordance with VDE 0278 only 1 minute necessary)

Result: No breakdown or flashover on any of the test loops

11. Impulse Voltage test 8 kV in water

As per test 4., but in water and the bunched cores grounded to water (not required by VDE 0278).

Result: No breakdown or flashover on any of the test loops

12. DC Voltage test in water

As per test 3., but with a DC Voltage of 15 kV each for 5 minutes (not required by VDE 0278).

Result: No breakdown or flashover on any of the test loops

Results of the insulation Resistance tests in water	Results	of	the	Insulation	Resistance	tests	in	water
---	---------	----	-----	------------	------------	-------	----	-------

Loop No.	Measure of the Insula	tion Resistance	with sample No. 2, M W	with sample No. 5, M W	with sample No. 9, M W	
1	Blue phase		>100	>100	>100	
	Brown phase	/all others	>100	>100	>100	
	Black phase	bunched	>100	>100	>100	
	Yellow/green phase		>100	>100	>100	
	All phases bunched	/water	>100	>100	>100	
2	Blue phase		>100	>100	>100	
	Brown phase	/all others	>100	>100	>100	
	Black phase	bunched	>100	>100	>100	
	Yellow/green phase		>100	>100	>100	
	All phases bunched	/water	>100	>100	>100	
3	Blue phase		>100	>100	>100	
	Brown phase	/all others	>100	>100	>100	
	Black phase	bunched	>100	>100	>100	
	Yellow/green phase		>100	>100	>100	
	All phases bunched	/water	>100	>100	>100	
4	Blue phase		>100	>100	>100	
	Brown phase	/all others	>100	>100	>100	
	Black phase	bunched	>100	>100	>100	
	Yellow/green phase		>100	>100	>100	
	All phases bunched	/water	>100	>100	>100	

Test requirements: Insulation resistance must be >1 M\Omega in accordance with VDE 0278

Result: Despite the additional tests of the thermal short circuit, all increased requirements of VDE 0278 part 1/6.80 and part 3/6.80 were fully met.